
A Strategy for Automatically
Generating Programs in the
Lucid Programming Language - -

Sally C. Johnson

JUNE 1987

NASA

NASA Technical Memorandum 89094

A Strategy for Automatically
Generating Programs in the
Lucid Programming Language

Sally C . Johnson
Langley Research Center
Humpton, Virginia

National Aeronautics
and Space Administration

Scientific and Technical
Information Office

1987

Abstract

A strategy for automatically generating and
verifying simple computer programs is described.
The programs are specified by a precondition and
a postcondition in predicate calculus. The programs
generated are in the Lucid programming language, a
high-level, data-flow language known for its attrac-

verification. The Lucid programming language is de-
scribed, and the automatic program generation strat-
egy is described and applied to several example prob-
lems.

I
I tive mathematical properties and ease of program

~

I , Introduction

There are currently numerous projects t o inves-
tigate the automation of program verification us-
ing automatic theorem-proving approaches. These
verification systems often use the same type of de-
ductive reasoning used by the programmer to cre-
ate the program being verified. Automatic program
verification is difficult and requires a highly detailed
program specification. However, when the specifica-
tion is sufficiently detailed, automatic generation of
proven programs is only slightly more difficult. Most
attempts at automating program generation assume
the given specification expresses only the basic func-
tion the program is supposed to perform without any
hint of an algorithm to be used. However, analysis of
simple program specifications reveals that the speci-
fication pius basic knowiedge 01 r r ~ a i i ~ ~ ~ & i ~ ~ A l y
leads the programmer to a specific algorithm.

The goal of most attempts to automate pro-
gram generation has been to save time and effort
on the part of the programmer or to enable some-
one with limited knowledge of computers to produce
programs. The goal of this study, however, is the
generation of highly reliable software. For applica-
tions in which failure of the software could result in
loss of life or property, standard testing is inadequate
and more elaborate techniques such as fault-tolerant
software and program proving are necessary.

This paper describes a strategy for automatically
generating and verifying simple computer programs
in the Lucid programming language (ref. 1) from a
precondition and a postcondition specified in predi-
cate calculus. The programs generated are correct,
but they are not necessarily efficient. Lucid is a
high-level, data-flow programming language known
for its attractive mathematical properties and its ease
of program verification. Lucid statements are actu-
ally assertions about the relationships between pro-
gram variables. These statements can easily be com-
bined with axioms defining the Lucid programming

statement semantics to produce a proof of program
correctness.

The inputs to the system are axioms defining the
precondition and the postcondition of the program
to be generated. The automatic program genera-
tion system contains a data base of basic axioms
of mathematics and of axioms defining Lucid pro-
gram statements. The axioms from the data base are
used to generate the program automatically. There-
fore, incorrect programs cannot be generated. (Even
though the code is proven correct, the compiler could
still introduce errors.) The eventual termination of
the program is also proven, a step which is missing
in most program verification systems. Thus, total
correctness of the program is proven.

The strategy was inspired by a theorem-proving
approach which used the principle of mathemati-
cal induction described by Manna and Waldinger
in the early 1970's. (See ref. 2.) Most of the
early work on automatic program generation used the
theorem-proving approach. Because iterative pro-
grams were difficult to represent with this approach,
the theorem-proving approach was abandoned in fa-
vor of applying transformation or rewriting rules to
the program's specification. (See refs. 3 to 7.) In
most of these systems, the transformation rules ap-
plied to the program specification are chosen with
little or no strategy. There may be an ordering to de-
cide which applicable rules are used first, and back-
tracking occurs when the system runs into a dead
end, but rules are basically applied in an ad hoc
l l*Ull*lVI **'-nnnp 1:nf;l qnma ---__ - p g p m mwntiially appears. The
automatic program generation strategy described in
this paper uses a theorem-proving approach, but con-
trolled searching is added to handle iteration. Anal-
ysis of the form of the specifications is used to guide
the application of rules and axioms in a very con-
trolled manner.

The strategy can generate only short, simple
programs. However, a typical large, complex pro-
gram is a collection of relatively simple tasks. The
strategy requires a complete, detailed specification
for each task. If the program specification is at the
level of the simple tasks, then each of the tasks can be
generated by the automatic program generator, and
the complex program can then be assembled from the
tasks.

Proving that the code is a correct implementa-
tion of the specification is almost worthless unless
the specification itself is known to be correct. This
is especially a problem since the specification re-
quired is at such a low level of detail. The specifica-
tion must be proven to accurately represent a high-
level, abstract program specification. This proof can
be accomplished by refining an abstract program

specification (possibly in natural English) into more
and more detailed hierarchical levels and proving
consistency with automatic theorem provers until
the detailed specification needed for the automatic
program generator is reached. A hierarchical spec-
ification methodology was developed by SRI Inter-
national and was demonstrated by application to
the proven operating system for the Software Im-
plemented Fault Tolerance (SIFT) computer. (See
ref. 8.) The lowest level of specifications of the SIFT
operating system used by SRI International in their
code proof contains enough detail for input to the
program generation strategy. The use of a hierarchi-
cal specification methodology can also aid in the diffi-
cult problem of developing a correct program control
structure above the basic tasks.

Because the synthesis of loops has been the most
difficult part of automatic program generation, most
of the discussion in this paper concerns the genera-
tion of loops with this strategy. The Lucid program-
ming language is described, and then the basic in-
duction strategy is described and applied to several
example programs. The limitations of the strategy
are then discussed.

Symbols
A logical and

v logical or

Y for all

3 there exists

1 not

I undefined element

+ implies

X I Y
G

every instance of x is replaced by y

the truth of A is implied by the truth
of every assertion in G

A

The Lucid Programming Language

The automatic program generator creates
programs in Lucid. A formal description of Lucid is
not given here but may be found in reference 1. Lu-
cid is a very high-level programming language. The
ultimate goal of a high-level language is to make pro-
gramming easier. A problem with most high-level
languages today is that these languages are so com-
plex that the program logic is obscured by the im-
plementation detail. Lucid control structures are at
a much higher level of abstraction. The way a Lucid
program is specified is closer to t,he way people think

and farther from machine implementation than con-
ventional languages. Thus, Lucid programs are easier
to understand than programs written in conventional
programming languages. What is unconventional
about Lucid is that the nonmathematical features
of popular languages have been removed, such as as-
signment statements that assign new values to exist-
ing variables (e.g., z = x + 1) and branching state-
ments. The only sequencing constraints are those
implicit in the data dependencies of the program.
Function definitions describe the results produced
when the functions are evaluated, and these descrip-
tions are precisely the assertions needed for proving
correctness.

Lucid was developed for its attractive mathemat-
ical properties and its ease for program verification,
and it is additionally suitable as a language for data-
flow computers. The language is being used exper-
imentally at a number of universities and research
institutes, including the University of Arizona, the
University of California at Berkeley, and SRI In-
ternational. Lucid can express computations with
widely differing behaviors of interest to NASA, for
example, iterative algorithms, recursive algorithms,
history-sensitive computations, computations with
high degrees of parallelism, and signal-processing
algorithms .

Although Lucid is not a widely used language,
it has several features conducive to automatically
generating programs. These features include the
following:

1. Variables are defined inductively.
2. No side effects from assignments are present.
3. Variables are not history sensitive.
4. An axiomatic definition of Lucid is available.

Lucid has a “single assignment” convention. This
convention makes Lucid a definitional language in-
stead of a conventional imperative language. In an
imperative language, the assignment statement mir-
rors the implementation of variable storage; that is,
an assignment replaces the contents of a storage lo-
cation with a new value. The assignment state-
ment in Lucid, however, defines the relationships
between variables, making Lucid a definitional lan-
guage. These relationships may be defined only once
for a given variable, and the relationship is an asser-
tion which holds for the variable throughout the en-
tire program block. The values of the loop variables
do change upon each iteration of a loop. The single
assignment rule still holds within any one iteration
cycle, because all redefinitions take place precisely
at the boundary between iteration cycles. Since the
assertions hold during each cycle, an inductive proof
may be used in proving correctness of iteration.

2

Another feature convenient for automatic pro-
gram generation is that assignment statements in
Lucid have no side effects. This simplifies the proof
considerably because no variables other than the
one assigned to can be affected by an assignment
statement.

The program generation strategy, as described in
this paper, will not work for traditional programming
languages such as Pascal and FORTRAN. Consider,
for example, the code to swap two variables. The
postcondition of the specification would be that the
new value of y equals the old value of x and the new
value of x equals the old value of y (y’ = z A z’ = y).
The Pascal code would be

temp:= z; z := y; y := temp;

which involves the use of a temporary variable. The
Lucid code would be

next x = y; next y = z;,

which requires no temporary variable. The genera-
tion of the Lucid code in this case is very straightfor-
ward from the specification; however, the generation
of the Pascal code requires the addition of an in-
terriai vaiiable not mentioned in thc specification. I t
would be difficult to construct an automatic program
generator that would know to use a temporary vari-
able. This ties in with the history-sensitivity prob-

program.
The only sequencing constraints in Lucid pro-

grams are those caused by data dependencies. Since
each assertion holds for the entire program block, the
order of statements in a Lucid program is not impor-
tant. In Lucid, the program statements are axioms
that can be used in the proof, and the axioms in the
proof are always true, not just after certain state-
ments have been executed, so the proof is easier t o
keep track of and to automate.

An axiomatic definition of Lucid for perform-
ing program proofs was developed by Ashcroft and
Wadge (see refs. 9 to 11). These proofs are simi-
lar in form to those developed for Pascal proofs by
Hoare (see ref. 12). The proof of Lucid programs is
discussed briefly in the section Program Proving in
Lucid. The reader is directed to reference 9 for a
more formal definition of the Lucid language and of
proving Lucid programs correct.

A complete formal definition of the Lucid’pro-
gramming language is beyond the scope of this
paper. Instead, a subset of the language sufficient
for implementing a simple program is described.

P .
ieiii UI ctniuiiis Gilj- behg ~ X C at e e r t a i ~ p ~ i c t ~ iz the

Assignment Statements

Unlike the programming languages commonly in
use today, Lucid assignment statements are mathe-
matical equations. In Pascal, the assignment state-
ment mirrors the implementation of s t o r a g e a n as-
signment replaces the contents of a storage location
with a new value, which may be based on the pre-
vious value. The Lucid assignment statement, how-
ever, is an axiom about the relationships between the
variables in the program. For example, the assign-
ment statement x = y + 2 means that every instance
of the variable x can be replaced by y + 2.

This concept is carried through in Lucid with
the definition of variables inductively. The first
occurrence of a variable x is denoted by

first z = “expression”;

where “expression” is syntactically constant (Le.,
built up from data constants, terms of the form
first x or x as soon as P: and other variables
syntactically constant). Subsequent occurrences are
defined inductively by

next x = “expression”;

where “expression” represents the relationship to
other inductively defined variables or input^ variables.
The current value of the variable x may be denoted
simply by x.

A variable can also be defined with the
C-ll- .mwJ L r ntQtnrnent u i h P r P
*VIIV..UU UJ -

z = “expressionl” followed by LLexpression2” ;

is equivalent to

first z = “expressionl”; next z = “expression2”;

Similarly, we may define a loop variable by defin-
ing each current value of the variable as a relationship
of other variables:

z = “expression”;

where “expression” leads ultimately to a relationship
to inductively defined variables. For example, the
statement

defines the current value of the variable x to be the
first value of y plus the current value of z.

The definition of the first value of a constant
and the next value of a constant is the value of the
constant; thus,

z = first y + z;

c = first c = next c

3

Every variable used on the right-hand side of a
definition must be defined once, and only once, in
the program block unless it is an input variable.

Input and Output

There are no explicit input statements in Lucid.
Input of a variable is implicit by reference to the vari-
able on the right-hand side of an equation. A variable
to be input is never defined by an assignment state-
ment or inductive definition. Output of variables is
denoted by an equation of the program or function
name to the variables in the program statement, as
shown in the following example program:

I

MULT = y

where

y = x * z ;

end;

Iteration

I Iteration is implied by variable definitions instead

values from loops and iteratively defined variables,

of by mathematically meaningless transfer state-
ments. The as soon as construct is used to extract

as in the following:
I

z = x as soon as x > y;

Termination of a loop is implied when all as soon
as expressions have been satisfied.

I Conditional Statements

Conditional statements in Lucid affect variables
instead of program flow, as shown in the following
example:

I next x = if x > y then 2 else y;

Program Proving in Lucid

The axioms necessary for proving Lucid programs
correct were developed by Ashcroft and Wadge and
are explained and proven to correctly describe the
language in reference 9. The axioms needed for the
proofs performed in this paper are briefly described
in this section. The reader is directed to reference 9
for a more formal discussion of the definition of
the Lucid language and of proving Lucid programs

~

I

correct. The following definitions are valid for the
axioms described in this section:

P, Q expressions

xi variables

G finite set of terms

1 undefined element

The notation x/y means every instance of the vari-
able x in an expression is replaced by the variable y.
For any assertion P and set of assertions G, G + P
means that the truth of P is implied by the truth of
every assertion in G.

The Commutativity Axioms allow the movement
of the qualifiers first and next into and out of
expressions in which all elements fit the qualification,
much like existential quantifiers can be moved in
logical proofs. For free variables 2 1 , 2 2 , ..., xi,

first P = P(zl/first 2 1 , xp/first x2, ...)

next P = P(xl/next 21, x2/next xp, ...)

For example, first (2 1 + x2) = first x1 + first x2.

The following axioms provide for further manipu-
lation of the first, next, and as soon as statements:

(first first P = first P) A

(next first P = first P)
and

P as soon as Q = if first Q then first P

else (next P as soon as next Q)

Loops in a Lucid program are defined by the as
soon as Induction Rule, as follows:

first P, P A 1 Q ---$ next P, eventually Q +
P A Q as soon as Q

Termination of a Lucid program can be proven
with the Lucid Termination Rule:

integer P, P > next P + eventually P 5 0

In addition to the above axioms defining Lucid
statements, any axioms or rules of inference from
ordinary logic may be used in Lucid proofs that are
valid in the presence of an undefined element 1. For
example, the statement for every z, the condition
z = z + 1 is not valid because I = I + 1. Also,
traditional methods of reasoning by contradiction are
not valid because of the undefined element. However,

4

the following two axioms are valid for reasoning by
contradiction:

(A = True) V 1 (A = True) --+ True

and
(A --+ False) - 1 (A = True)

The first axiom states that it is always true that
(A = True) is true or (A = True) is not true. The
second axiom states that the truth of the condition
(A -+ False) implies that the condition (A = True)
is not true.

Proof of Correctness of a Lucid Loop

This section describes how the Lucid as soon as
construct is used to build a loop and how such a loop
may be proven correct. The following sections then
explain in detail how a loop built around this Lucid
construct may be automatically generated. The
notation in this paper is as follows: input variables
are denoted X I , 2 2 , ..., and internal and output
variables are denoted y1, y2,

We want to write an iterative program to compute
the integer quotient and remainder of two natural
numbers zl and x2, where 22 > 0. The specifications
of the program are as follows. The precondition for
the prograin i s

pre: 5 2 > 0

and the postcondition is

post: (X I = y1 * x2 + y2)

A (Y2 < x2) A (Y2 L 0)

where y1 is the integer quotient and y2 is the
remainder.

We will start with y1 = 0 and keep incrementing
y1 by one until the difference between (y1 * x2) and
2 1 , which is equal to the remainder y2, is less than
x2. We thus define y1 inductively as

first yi = 0; next y1 = y1 + 1;

While we are determining the quotient y1, we also
need to keep track of the remainder y2 to determine
when to stop the iteration. For this, we define y2
inductively as

first y2 = X I ; next y2 = y2 - x2;

These two inductive definitions of variables y1 and
y2 create the loop to perform the division. Next, we
need to make the program execution terminate when
the remainder y2 is less than x2, and we need to make

the program output the quotient and remainder. We
accomplish this using the as soon as statement on
the program statement, as follows:

IDIV = (yl , y2) as soon as (y2 < x2);

The entire program is thus

(Sl)
(S2) where

(S3) first y1 = 0;

(S4) first y2 = X I ;

(S5) next y1 = y1 + 1;

(S6)
(S7) end;

A proof that this program correctly implements
specification is described below.

In Lucid, as in other programming languages

IDIV = (yl , y2) as soon as (y2 < z2);

next y2 = y2 - x2;

ts

a
loop is proven through use of a loop invariant and
a termination condition. The loop invariant is an
assertion which is true on each iteration of the loop.
The loop invariant describes the relationships of the
variables used in the loop. The termination condition
is an assertion which is false initially and on each
iteration of the loop until the final iteration, when it
becomes true.

All the axioms used in the proof are described in
the section entitled The Data Base. These are the
same axioms which are used in a subsequent section
to generate the same program with the automatic
program generation strategy.

Since the program is based around the as soon
as function, we will base the proof on the Lucid as
soon as Induction Rule. There are three conditions
we need to prove true about the program. Using the
precondition specified, we must show that the loop
invariant equation is true for the initial values chosen
for the variables. We must also prove that if the
invariant equation is true for the variable values for
the current iteration and if the termination condition
is not true, then the invariant equation will be true
for the variable values on the next iteration. To
prove total correctness, we must also prove that the
termination condition will eventually be true, so the
program will eventually terminate.

The Lucid as soon as Induction Rule is

first P, P A 1 Q -+ next P, eventually Q

P A Q as soon as Q
where P is the loop invariant, and Q is the
termination condition. For any assertion A and set

5

of assertions G,G A means that the truth of
A follows from the truth of every assertion in G.
So once we prove the three assertions eventually
Q, first P, and P A 1 Q + next P are true for
the P and Q in our program, then we have proven
P A Q as soon as Q. This proves that the loop will
eventually terminate and that when it terminates,
the loop invariant and the termination condition will
both be true.

For this program, the loop invariant P is

(x1 = Y1 * 2 2 + Y2)

and the termination condition Q is

The proof then proceeds by our proving each of the
following three conditions:

7 . 2 1 = (y1 + 1) * 2 2

+ (Y2 - "2)

8 . x1 = next y1 * 5 2

+ (Y2 - 5 2)

9. x1 = next y1 * 5 2

+ next y2

10. next (2 1 = y1 * 5 2

+ Y2)

Proof of eventually Q
1 . 2 2 > 0

2. Y2 > Y2 - 2 2

first P
3. y~ > next y2

P A 1 Q + next P

eventually Q

The definitions for the Lucid programming state-
ments and the theorems and axioms used in the proof
are contained in the section entitled The Data Base.

Proof of first P:
1 . 2 1 = 0 + 5 1

2 . 2 2 * 0 = 0

3. 5 1 = 0 * 5 2 t 5 1

4. 5 1 = first y1 * 5 2

+ 51

+ first y2
5. x1 = first y1 * 2 2

6. first (X I = y1 * x 2

+ Y2

Identity of addition

Substitution property
of 0

1,2, substitution

3, definition of first
(from (S3))

4, definition of first
(from (S4))

5, commutativity of
first

Proof of P A 1 Q + next P

1. 5 1 = y1 * 5 2 + y2

2 . 2 2 - 2 2 = 0

3. 5 1 = y1 * z 2 t y2
+ 5 2 - 5 2

4. 5 1 = (y1 * 5 2 + "2)

5 . 1 * 2 = 5 2

+ (Y2 - "2)

Given assumption P

Identity of subtraction

1,2, identity of addition

3, associativity of
addition

Identity of
multiplication

4. y2 - 5 2 > next y2

- 5 2

5. y2 - 2 2 > next (y ~

- "2)

6. eventually (y2 - 5 2)

< O

7. eventually y~ - 5 2

+ 5 2 < 5 2

8. eventually y2 < x 2

4,5, substitution,
distributivity of
multiplication over
addition

4,6, substitution,
identity of
multiplication

7, definition of next
(from (S5))

8, definition of next
(from (S6))

9, commutativity of
next

From precondition

1, if a > b then
c - b > c - a

2, definition of next
(from (S6))

3, if a > b then
a - c > b - c

4, commutativity
of next

5, Lucid Termination
Rule

6, if a < b then
a + c < b + c

7, identity of
subtraction

Through use of the as soon as Induction Rule and
the three proofs above,

P A Q as soon as Q

The Automatic Program Generator
A brief look at the current state of the art in au-

tomatic theorem provers provides some insight into
how an automatic program generator might be im-
plemented. The user typically inputs the theorem to
be proven and enumerates all the axioms necessary
to perform the proof. If the theorem prover is unsuc-
cessful, then the user must supply more information,
such as additional axioms or a matchup of the vari-
ables in the theorem with the variables in the axioms
to be used. An interactive "debugger" assists the
user in determining what information is needed by
the theorem prover. The proof is attempted repeat-
edly until eventually the user has supplied enough

6

hints that the theorem prover “sees” the scheme to
produce the proof.

The automatic program generator could use a
similar interactive scenario. The user would first
input the precondition and the postcondition which
specify the program to be generated. The user would
then instruct the program generator to attempt the
code generation using axioms available in its data
base. If the automatic program generator was not
successful within a set amount of time, the user
would supply more information. An interactive de-
bugger could list all the applicable axioms in the data
base and the user could highlight certain axioms that
might lead to programs, or the user could supply
additional axioms to be used. The user could also
identify the matchup of the variables in the precon-
dition and the postcondition with the variables in
the axioms to be used in the code generation. The
user could keep instructing the program generator t o
retry with more and more information until finally
the program generator would “see” the scheme to
automatically generate the code. In the worst case
scenario, the automatic program generator would be
no more help t o the user than current automatic
theorem provers, with which the user must essen-
tially provide the code and come up with the proof
scheme, after which the theorem prover mechanically
performs and verifies the proof. However, in the
best case scenario, the automatic program generator
would be of tremendous help in generating a proven
code.

Inputs to the Program Generator

If we assume a sufficient data base of mathemat-
ical axioms is present, the only inputs to the auto-
matic program generator are the precondition and
the postcondition in predicate calculus specifying the
program. These conditions must be sufficiently de-
tailed to define each loop and action that must be
performed in the program. If the program specifi-
cations are not detailed enough to include a neces-
sary loop invariant, the automatic program gener-
ation strategy may fail because the loop invariant
cannot be deduced. Current strategies for automat-
ically generating loop invariants for automatic pro-
gram verification rely on having the code in hand.
(See ref. 13.) If the program to be generated is for
a life-critical application and must be verified as cor-
rect, this requirement of detailed specification is not
unreasonable.

The Program Generation Approach

The strategy for generating loops was developed
from an examination of the way loops are proven. As

shown in the example in the last section, the proof of
correctness of a loop revolves around a loop invariant
and a termination condition. The loop invariant
and the termination condition are usually explicitly
stated in the postcondition. In the example, the
postcondition (2 1 = y1 * 22 + y2) A (32 < 5 2)
was made up of the loop invariant (XI = y1* 22 + y2)
and the termination condition (y2 < 22). The
construction of the loop is usually clear from the loop
invariant and the termination condition.

Since all Lucid loops are based on the as soon
as function, they are all constructed with the same
basic strategy. The strategy consists of examining
the precondition and the postcondition to find loop
invariants, termination conditions, or other phrases
to determine the form of construction for the loop. A
data base of mathematical axioms and Lucid proof
rules is then systematically searched for applicable
rules and axioms to construct the loop.

The automatic program generation is done in two
steps, analysis and program generation. The anal-
ysis step involves choosing the loop invariant and
the termination condition for generating the program
based on the form of the precondition and the post-
condition given. The condition predicates are simple
clauses separated by logical and’s. The clauses are
examined to identify possible loop invariants, loop
directions, termination conditions, conditionals, etc.
The program generation step then uses a data base
of Lucid statement rules and basic mathematical ax-
ioms to generate the program guided by the chosen
loop invariant, and t,ermination condition.

The purpose of a loop is t o repeatedly perform
some process. The process may be some computa-
tion, such as repeatedly multiplying to perform in-
teger exponentiation, or it may be some test over a
range, such as testing for divisors to determine if a
number is prime. The number of repetitions of the
loop is usually guided by a control variable. The
control variable is inductively defined to count the
correct number of repetitions or to enumerate all
members in a range to be tested. The termination
condition is used to determine that the control vari-
able has finished counting the correct number of iter-
ations or that all members in the correct range have
been tested. The loop invariant defines the compu-
tation or test to be performed. The output variables
other than the loop control variable are also defined
inductively to keep the loop invariant true on each
repetition.

Preconditions identify the input variables and
their ranges, but they are usually of little help in
identifying a possible algorithm. The clauses of the
postcondition are classified according to type, as
explained in the following subsections.

7

Termination conditions are usually simple clauses
consisting of an input variable] a Boolean oper-
ator, and an output variable, such as y1 < 2 1 .
Termination conditions can sometimes be used to de-
termine the direction of induction (i.e., whether the
loop control variable is “going up’’ or “going down”).
For example, y1 < x1 or 91 5 x1 usually means
going-down induction] y1 > x1 or 91 L x l usually
means going-up induction, and y1 = 5 1 or y1 # x1
does not indicate a direction of induction.

Loop invariants are equations defining relation-
ships between one or more output variables and one
or more input variables, such as

Many simple one-loop routines are specified only
by a loop invariant and a termination condition. An
example of this type of routine is given in the Ex-
ample section] and the program generation strategy
is shown in detail. A loop is not always defined by
both an invariant and a termination condition. The
termination condition is not always present, and the
loop invariant is not always easy to identify. The
following is an example of a loop which seems to be
specified with two termination conditions. One of
the termination conditions may be used as a loop
invariant.

pre: integer z 2 0

post: integer y A (y2 I: x) A (x < (y + I) ~)

These conditions specify a program to calculate an
integer square root. The first clause (y2 5 x) is a
good choice for a loop invariant because it is easy to
choose a first value for y that will satisfy this clause.
A first value for y to satisfy (x < (y + 1)2) would
not be so trivial to find.

Construction of a Loop From an Invariant and
a Termination Condition

As shown above, a loop may be identified by a
loop invariant and a termination condition. The
strategy described in this section is for a single loop.
This strategy would be repeated for each loop in a
complex program.

Once the loop invariant, the termination condi-
tion] and the induction direction are selected, the
loop is constructed. The loop construction is de-
signed around the same Lucid as soon as Induction
Rule used in the proof of correctness:

first P, P A 7 Q + next P, eventually Q +
P A Q as soon as Q

where P is the loop invariant and Q is the termi-
nation condition. Program generation proceeds with
the following basic steps.

Select initial variable values. Once the loop invari-
ant is chosen and the loop direction is determined]
the initial variable values must be selected. This is
done by searching the data base for axioms which
can be used to define initial values of the variables to
make the invariant trivially true. For example, if an
initial value of zero is chosen for a variable x, then all
other variables multiplied by x essentially disappear
from the initial invariant equation.

For going-up induction] the initial control vari-
able value may be some value, such as zero or one,
which is a basic identity of the mathematical oper-
ations involved. For going-down induction] the ini-
tial control variable value may be equal to some in-
put variable value. The search of the data base is
then guided by the operations being specified by the
already-identified invariant and the possible induc-
tion direction being suggested by the termination
condition. This section satisfies the clause first P
in the as soon as Induction Rule. If no initial vari-
able values can be found to satisfy the invariant, then
another loop invariant should be chosen.

Define variables inductively to keep invariant true.
Once the initial variable values are defined, the yvari-
ables must be defined inductively to keep the invari-
ant true throughout the program. The direction of
this induction may have been determined when the
precondition and the postcondition were examined.
This section satisfies the clause P A 1 Q + next P
in the as soon as Induction Rule.

Prove loop termination. Eventual loop termina-
tion should then be proven with the Lucid Termina-
tion Rule

integer PI P > next P + eventually P 5 0

The program construction is then completed by in-
clusion of the as soon as statement to define the
loop. The format of the entire program is as follows:

pname = 91, y2, ...] yn as soon as Q

where

first Y1 = Ul(Xl, x2, ” ’ I y1, y2, ...);

next 91 = 91(21, x2, ’”, y1, y2, ...);
next y2 = g2(...); ... next yn = ...

first y2 = ~ 2 (...); ... first gn = ...

end

8

where an is a function defining the initial value of
variable yn, gn is a function inductively defining
variable yn, and Q is the loop termination condition.

The following sections contain three examples of
how to generate simple one-loop programs. The pre-
condition and the postcondition specifying each pro-
gram are shown, and the step-by-step construction
is explained. The contents of the data base needed
to generate each program are listed. The first ex-
ample is the same integer division program that was
constructed and proved in a previous section. The
axioms used to automatically generate the program
are the same axioms used previously in the proof of
correctness of this program.

Example

The precondition and the postcondition for a
program to perform integer division are as follows:

pre: q , 52 integers; 22 > 0
I post: (51 = Y1 * x2 + Y2) A (Y2 < x2) A (Y2 2 0)

If we assume an adequate data base of mathematical
axioms exists, the precondition and the postcondition
are the only inputs needed to automatically generate
the program. The construction of this one-loop
program then proceeds automatically through the
steps oiitlined in The Automatic Program Ccnerutor
section and is illustrated below.

Classify Condition Clauses

The first step is to examine the precondition and
the postcondition to determine a loop invariant and
a termination condition. The precondition identifies
the input variables and their ranges. The postcon-
dition is separated into two clauses separated by a
logical and (A).

The first clause (21 = y1 * 52 + y2) is used as
the loop invariant, because it is an equation defining
the relationships between the two output variables
and the two input variables. The second clause
(y2 < 52) is used as the termination condition-
a simple clause consisting of an input variable, a
Boolean operator, and an output variable. Since the
output variable involved is y2 and its relationship to
the input variable is the inequality <, the induction
is on y2 and the induction is with y2 decreasing.

I

,

I

1

Algorithm Synthesis

In the previous step, we determined that the loop
invariant is (2 1 = yl * 52 + y2) and the termination
condition is (y2 < 52). The algorithm synthesis pro-
ceeds with the selection of initial variable values, the

inductive definition of variables to keep the invariant
true, and the proof of loop termination.

Select initial variable values. The goal is to
select initial variable values to make the invariant
x1 = (first y1 * x2) + first y2 trivially true. The
induction is on y2 decreasing, so the initial value of y2
is probably a function of the input variables instead
of a 0 or 1. The data base is searched for basic axioms
such as identity axioms over the multiplication and
addition operations, since these are the operations
in the invariant. The basic axioms for these two
operations are

a + O = a
a * O = O
a * l = a

To fill in the invariant equation z1 = (first y1 *
x2) + first y2, the main operator is addition and its
identity equation is a + 0 = a, so either

(first y1 * s2) = 51 A first y2 = 0

or

(first y1 * Q) = 0 A first y2 = x1

The first set of equations is rejected because the
equation (first y1 * x2) = x1 has no integer solution
for first y1 to satisfy all possible 51 and x2. The
second alternative is chosen because with the basic
equations for the operation multiplication, the first
equation jiirst y1 * z2j = O ca~i be saiisikd by use
of first y1 = 0 and first y2 = zl can be satisfied
by assignment. The initial value for the invariant
equation is thus chosen as (q = 0 * z2 + q),
and therefore

first y1 = 0
first y2 = zl

Define variables inductively to keep invariant true.
To determine the method by which y2 should be
decremented, the data base is searched for relation-
ships between the multiplication and addition oper-
ations, since these are the two operations in the in-
variant. The search of the data base locates axioms
such as distributivity of multiplication over addition;
that is,

a * (b + c) = a * b + a * c

The variable y2 can decrease by 1, 51, 52, or y1 (or
by some combination of variables). The goal is to find
a way to decrease y2 and modify the other variables
of the invariant (y1 is the only other variable in this

9

case) while keeping the invariant true. Four obvious
cases of decreasing y2 by 1 or by a simple variable
are examined.

Case one is to decrease y2 by 1:

This gets us nowhere because there is no integer
solution to satisfy next y1 = (y1 * x2 + 1)/x2,
so there is no easy way to define y1 inductively to
eliminate the added 1.

Case two is to decrease y2 by XI :

The variable 21 is not guaranteed positive in the
precondition, so this may not decrease y2. But more
importantly, there is no integer solution to satisfy
(y1 * x2 + 21)/22, so there is no easy way to
inductively define y1 to get rid of the added xi and
keep the invariant true.

In case three, y2 is decreased by 22:

Applying the distributive law described above plus
the axiom a * 1 = a results in x1 = (y1 + I) *
x2 + (y2 - x2), so the variable y1 can be inductively
defined as next y1 = y1 + 1 and the invariant
is kept true. With the precondition x2 > 0, this
algorithm is guaranteed to decrease y2. Case three
looks like a possible algorithm.

In case four, y2 is decreased by y1:

x1 = Y1 * x2 + Y1 + (Y2 - Y 1)

21 = (Y1 + Y h 2) * x2 + (Y2 - Y l) . The
Applying the distributive law results in

variable y1 can be defined inductively to keep the in-
variant true; however, since the initial value of y1 is
0, y2 is not decreased and the program runs forever
and does nothing. This problem would be caught by
the program generator at this step or in the next step
when termination is proven.

The four cases examined above lead to one possi-
ble induction algorithm-decrease y2 by xq at each
iteration. The two variables are thus inductively
defined as

next y1 = y1 + 1

next y2 = y2 - x2

Prove loop termination. Termination is proven by
use of the Termination Rule as follows:

integer P, P > next P + eventually P 5 0

The termination condition is (y2 < x2), or (y2 -x2 <
0), so with P = y2 - 2 2 we get the following:

1.122 > 0
2.0 > 0 - "2

3. (Y2 - 52) >
- "2

4. (Y2 - "2) >

5. (Y2 - "2) >
(Y2 - "2)

- next x2

From precondition

If a > b then a - c

> b - c, identity of
subtraction

If a > b then a + c

> b + c , identity of
addition

(yz - "2)

next y2 Definition of
next (from (S6))

next Commutativity of next

Program Construction

From the program format, the program is

IDIV = (y l , y2) as soon as (y2 < x2);

where

first y1 = 0;

first y2 = X I ;

next y1 = y1 + 1;

next y2 = y2 - 2 2 ;

end:

The program is guaranteed correct because it was
constructed through use of only mathematical ax-
ioms and axioms about Lucid statements, so a formal
proof is unnecessary. For comparison purposes, the
program generated automatically is exactly the same
as the one generated by hand and proven correct in
the previous section Proof of Correctness of a Lucid
Loop. The relationship between the automatic gen-
eration and the formal proof becomes obvious upon
comparison of the two. The axioms used in the proof
are the same axioms used to generate the program,
and the loop invariant and the termination condition
are the key components driving both the code gener-
ation and the poof of correctness.

The Data Base

The basic mathematical axioms and Lucid rules
used to generate this simple example program are
presented below. The basic axioms of mathemat-
ical operations used in the example proof are the
following:

10

a + o = a

a * l = a

a - a = O

a * O = O

a + (b + c) = (a + b)
+ C

a * (b + c)

+ (a * c)

= (a * b)

Identity of addition

Identity of
multiplication

Identity of subtraction

Substitution property
of 0

Associativity of
addition

Distributivity of
multiplication over
addition

If a > b then a - c > b - c
If a > b then c - b > c - a
If a < b then a f c < b + c
Substitution of equal variables

The following axioms, described in the section Pro-
gram Proving in Lucid for dealing with Lucid state-
ments, are used in the example proof

Commutativity Axioms:

For free variables zl, x2, ..., si :

first P = P(sl/first 21, x~/first z2, ...)

next P = P(zl/next XI, zz/next x2, ...)

Lucid Termination Rule:

integer P, P > next P + eventually

P I 0

as soon as Induction Rule :

first P, P A 1 Q + next P, eventually Q

Forall Clauses

Routines specified by “forall” clauses (‘hot exist”
clauses) are routines for searching over a range. The
forall clause is usually of the form

Vu [range --f test-condition]

This defines a search to ensure that all members
within the range meet the test condition. The in-
duction direction can often be determined from the
termination condition. An example routine speci-
fied with a forakl clause is the following program to
determine if two integers are relatively prime:

pre: 51, 2 2 2 1 A (zl 5 x2)

post: RPRIME (SI? ~ 2)

where

RPRIME (~ 1 ~ ~ 2) = VZ (2 5 z 5 ~1 +

((u1 DIVz # u1/z) v (v2 DIV z # u2/4))

The range specified in this forall specification is
integers between 2 and u1, and the test condition is
((u1 DIV z # ul/z) V (u2 DIV z # uplz)). The
generated program according to this specification is

RPRIME = (not(al div y = ~ l , / y) or not

(“2 div y = xp/y)) as soon as (y = zl) or

not (not(z1 div y = zl/y) or

not(z2 div y = q / y))

where

first y = 2;

next y = y + 1;

end;

The not exist clause is usually of the form
P A Q as soon as Q

7 3 u [range A test-condition]

Constructing a Program From Other
Specification Forms

A loop is often specified in a form other than the
invariant and the termination condition needed for
the loop strategy. In this section some of the other
forms of specifications and the construction of pro-
grams from these forms are described. Some involve
determination of a loop invariant and a termination
condition from another form. Other forms lead to
other program construction methods.

This defines a search to ensure that no members
within the range meet the test condition. An ex-
ample routine specified by a not exist clause is the
following specification for a routine to determine if
an integer is prime:

pre: z1 integer

post: PRIME (x1) where

PRIME (u) = 7 3 z [(2 5 z < U)

A (u DIV z = ./.)I
11

The not exist clause consists of the range
(2 5 z < u) and a test condition (uDIVz = u/z).
The program that would be generated is

PRIME = not(y = z) as soon as (z div

Y = X/Y)

where

first y = 2;

next y = y + 1;

end;

Exists Clauses

LLExists” clauses contain an invariant upon which
induction is performed. An example specification is
the following one to determine a power of two larger
than a given integer x:

This postcondition consists of an invariant
(2: = y2) and a termination condition (y2 > x),
which together define a loop. The program is

POW2 = y2 as soon as y2 > z

where

first y1 = 0;

first y2 = 1;

next y1 = y1 + 1;

next y2 = y2 * 2;

end;

Other Constructs

Many other constructs may also be found in
program specifications, some of which specify loops
and some of which specify other program structures.
These have not yet been examined, but they would
also be helpful in automatically generating a pro-
gram. For example a conditional clause as described
below calls for an if then else construct in the pro-
gram instead of a loop.

A clause containing subclauses separated by log-
ical or’s (V) is a conditional clause. A conditional
clause means an if then else structure will be needed
in the program. An example is the following speci-
fication of a program to find the maximum of two
given integers:

pre: zl, x2 integers

post: ((y = 5 1 A 5 1 2 2 2) V (y = 2 2 A 2 1 5 22))

The program to implement this conditional clause is

COND = if z 1 > z2 then x1

else x2;

Program generation using conditionals seems to be
more straightforward when the specification is in
subjunctive normal form (i.e., when the conditions
are manipulated to contain subexpressions separated
by logical or’s and there are no logical or’s within
each subexpression).

Another common specification form is to specify
a routine as an inductively defined or a recursively
defined function. The generation of such routines
often clearly follows from the specifications. One
example is the following recursive specification for
a program to calculate factorials:

post: y = FACTORIAL(z)

where FACTORIAL(u) = if u = 0 then 1

else u * FACTORIAL(u - 1)

The program to implement this function is so simple
it is one statement, and it is almost identical t o the
specification:

FACT(z) = if z = 0 then 1

else x * FACT(z - 1);

More Complicated Specifications

In more complicated programs, the specifications
are often combinations of several of the above con-
structs, as in the following specifications for a routine
for determining the greatest common divisor of two
given integers:

pre: z1 2 0, 2 2 2 0

post: (z~/Y = ~ 1 D I v y) A (22/y = x2DIvy) A

‘du [(. < Y) - ((Z l / u # Z l DIV

v (“2 / u # x2 DIV .))I
This postcondition consists of two termination con-
ditions, (51 / y = z1 DIV y) and (“2 / y = x2
DIV y), and the forall c l a u s e h [(u < y) +. ((21 /
u # x1 DIV u) V (z2 / u # z2 DIV u))]. The forall
clause consists of the search range (u < y) and the
test condition ((2 1 / u # x1 DIV u) V (z2 / u # x2
DIV u)).

12

Limitations

The strategy discussed in this paper, like all cur-
rent strategies for automatic program generation, is
extremely limited. Currently, only very simple and
well-defined problems may be solved by automatic

' program generation. For life-critical applications, the
expense of dividing a problem into simple pieces and
developing the complete specifications needed for this
type of strategy to work may be justified by the
importance of reliability. Although there are few
applications that meet this criterion, the ability to
produce highly reliable software has many military
and civilian benefits, including space exploration,
autonomous processing, and highly efficient aircraft.

The automatic program generation strategy re-
quires all the axioms necessary for the proofs to be
already in the data base or to be supplied by the user
as needed. Similarly, the program generator can only
handle program specifications in forms it knows how
to analyze, because it depends on recognizing the
form of the program. The strategy involves a one-by-
one search over a range, so the program must search
over a range of something that is countable, such as
over a range of integers or a set. Obviously a one-by-
one search over a range of real numbers is not pos-
sible because they are uncountable, so the program
generator strategy cannot presently so!ve a problem
such as y = f i . This is a serious limitation of the
strategy. However, there are numerous applications
with high reliability requirements, such as computer

operating systems and flight-control-sy stem mode
logic, for which the strategy would work well.

Concluding Remarks

A strategy was described for automatically gener-
ating programs from a precondition and a postcondi-
tion. The strategy assumes that the algorithm to be
used in the program is usually explicit in the program
specification or can be easily deduced. The strat-
egy proposes a one-step approach to the traditional
two-step process of generating a program first and
then attempting to perform a proof of correctness.
Since there are numerous programs possible to solve
any problem and some programs are easier to prove
correct than others, this strategy eliminates the ini-
tial educated guess at a provable program. Also, the
strategy shows some promise for allowing the genera-
tion of correct programs by less-skilled programmers.
The strategy works well for the simple examples at-
tempted in this paper with a variety of program spec-
ification forms. Much more work should be done to
apply the strategy to other types of programs and to
more complex programs. Also, the problem of cor-
rectly developing the low-level specifications needed
for the strategy should be addressed.

NASA Langley Research Center
Hampton, VA 23665-5225
March 17, 1987

13

References
1.

2.

3.

4 .

5.

6 .

7.

Wadge, William W.; and Ashcroft, Edward A,: Lucid,
the Dataflow Programming Language. Academic Press,
Inc., c.1985.
Manna, Zohar; and Waldinger, Richard J.: Toward
Automatic Program Synthesis. Commun. ACM, vol. 14,
no. 3, Mar. 1971, pp. 151-165.
Manna, Zohar; and Waldinger, Richard: A Deductive
Approach to Program Synthesis. ACM Trans. Program.
Lang. d Syst., vol. 2, no. 1, Jan. 1980, pp. 90-121.
Bibel, W.; and Hornig, K. M.: LOPS-A System Based
on a Strategical Approach to Program Synthesis. Auto-
matic Program Construction Techniques, Alan W. Bier-
mann, GCrard Guiho, and Yves Kodratoff, eds., Macmil-
lan Publ. Co., c.1984, pp. 69-89.
Manna, Zohar; and Waldinger, Richard: Synthesis:
Dreams + Programs. IEEE Trans. Softw. Eng.,
vol. SE-5, no. 4, July 1979, pp. 294-328.
Burstall, R. M.; and Darlington, John: A Transfor-
mation System for Developing Recursive Programs. J .
Assoc. Comput. Mach., vol. 24, no. 1, Jan. 1977,

Barstow, David R.: The Roles of Knowledge and
Deduction in Algorithm Design. Automatic Program

pp. 44-67.

8.

9.

10

Construction Techniques, Alan W. Biermann, GCrard
Guiho, and Yves Kodratoff, eds., Macmillan Publ. Co.,

Levitt, Karl N.; Schwartz, Richard; Hare, Dwight;
Moore, J. S.; Melliar-Smith, P. Michael; Shostak, Robert
E.; Boyer, Robert; Green, Milton; and Elliott, W. David:
Investigation, Development, and Evaluation of Perfor-
mance Proving for Fault- Tolerant Computers. NASA

Ashcroft, E. A.; and Wadge, W. W.: Lucid-A Formal
System for Writing and Proving Programs. SZAM J.
Comput., vol. 5, no. 3, Sept. 1976, pp. 336-354.
Ashcroft, E. A.; and Wadge, W. W.: Lucid, a Non-
procedural Language With Iteration. Commun. ACM,
vol. 20, no. 7, July 1977, pp. 519-526.

c.1984, pp. 201-222.

CR-166008, 1983.

11. Ashcroft, E. A.: Program Proving Without Tears. Pro-
ceedings of International Symposium on Proving and
Improving Programs, Inst. Recherche d’hformation et
d’Automatique, 1975, pp. 99-111.

12. Hoare, C. A. R.: An Axiomatic Basis for Computer Pro-
gramming. Commun. ACM, vol. 12, no. 10, Oct. 1969,

13. Wegbreit, Ben: The Synthesis of Loop Predicates. Com-
pp. 576-580, 583.

mun. ACM, vol. 17, no. 2, Feb. 1974, pp. 102-112.

14

1. Report No.
NASA TM-89094

A Strategy for Automatically Generating Programs
in the Lucid Programming Language

2. Government Accession No. 3. Recipient’s Catalog No.

6. Performing Organization Code

4. Title and Subtitle 5. Report Date

16. Abstract
A strategy for automatically generating and verifying simple compiit,er prngramq is rlescrihed. The
programs are specified by a precondition and a postcondition in predicate calculus. The programs
generated are in the Lucid programming language, a high-level, data-flow language known for
its attractive mathematical properties and ease of program verification. The Lucid programming
language is described, and the automatic program generation strategy is desrrihed and app1ic.d tn
several example problems.

7. Author(s)
Sally C. Johnson

9. Performing Organization Name and Address
NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

-
8. Performing Organization Report No.

L- 16244
10. Work Unit No.

505-66-2 1-0 1
11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum
14. Sponsoring Agency Code

17. Key Words (Suggested by Authors(s))
Proof of correctness

18. Distribution Statement
Unclassified-Unlimited

19. Security Classif.(of this report) 20. Security Classif.(of this page)
Unclassified Unclassified

21. No. of Pages 22. Price
15 A02

